
Screen Scraping

Screen Scraping Defintions (http://www.wikipedia.org/)

Originally, it referred to the practice of reading text data from a computer display terminal's
screen. This was generally done by reading the terminal's memory through its auxiliary port, or by
connecting the terminal output port of one computer system to an input port on another.

As a concrete example of a classic screen scraper, consider a hypothetical legacy system
dating from the 1960s — the dawn of computerized data processing. Computer to user interfaces
from that era were often simply text-based dumb terminals which were not much more than virtual
teleprinters (such systems are still in use today for various reasons).

The desire to interface such a system to more modern systems is common. A robust solution
will often require things no longer available, such as source code, system documentation, APIs,
and/or programmers with experience in a 50-year-old computer system.

In such cases, the only feasible solution may be to write a screen scraper which "pretends" to
be a user at a terminal. The screen scraper might connect to the legacy system via Telnet, emulate
the keystrokes needed to navigate the old user interface, process the resulting display output, extract
the desired data, and pass it on to the modern system.

More modern screen scraping techniques include capturing the bitmap data from the screen
and running it through an OCR engine, or in the case of GUI applications, querying the graphical
controls by programmatically obtaining references to their underlying programming objects.

Web Scraping (http://www.wikipedia.org/)

From Screen Scraping we get the idea of the new technology Web Scraping (also called Web
Harvesting or Web Data Extraction) which is a computer software technique of extracting
information from websites.

Usually, such software programs simulate human exploration of the Web by either
implementing HTTP, or embedding certain full-fledged Web browsers, such as the Internet Explorer
or the Mozilla Web browser.

Web scraping is closely related to Web indexing, which indexes Web content using a bot and
is a universal technique adopted by most search engines. In contrast, Web scraping focuses more on
the transformation of unstructured Web content, typically in HTML format, into structured data that
can be stored and analyzed in a central local database or spreadsheet.

Web scraping is also related to Web automation, which simulates human Web browsing
using computer software. Uses of Web scraping include online price comparison, weather data
monitoring, website change detection, Web research, Web content mashup and Web data
integration.

Screen-Scraper Software (http://www.screen-scraper.com/)

Here we will use one of the Web Scraping Software called screen-scraper which extracte
information from web sites with four main steps:-

1. Use the proxy server to determine the exact files that need to be requested in order to get
the information you're after.

2. Create a scraping session with scrapeable files that define the sequence of pages screen-
scraper will request.

3. Generate extractor patterns to define the exact information you need screen-scraper to grab
from each page.

4. Write small scripts or programming code to invoke screen-scraper and/or work with the data
it extracts. If you don't do much programming, don't worry. Generally the scripts you'll need
to write to work with screen-scraper are small and simple, and you can often just modify the
example scripts we provide.

Create a proxy session now by clicking the Add a new proxy session icon. Once you have added
the proxy session, you screen should look similar to the following screenshot.

Give the proxy session the name Hello World by typing it into the Name field. The Port field
determines the port number that your web browser will use when communicating with screen-
scraper's proxy server. Leave the port at 8777.

we need to set up our web browser so that it will use screen-scraper as a proxy server

At this point we can get the proxy server running. We can do this by clicking on the Start Proxy
Server button in the proxy session. After this, we click on the Progress tab, which will display all of
the requests and responses recorded by the proxy server.

Now we visit
If you take a look at screen-scraper, you'll notice that it recorded this transaction in the HTTP
Transactions table.
We can click on any row in the table to load the information related to the browser's request and
response in the lower pane.

The lower pane shows the details of the HTTP request the browser made, any HTTP headers
(including cookies), as well as POST data (if any was sent). We can view the corresponding
response from the server by clicking on the Response tab.

We start creating a scraping session. A scraping session is simply a container for all of the files and
other objects that will allow us to extract data from a given web site.

To create a scraping session, click on the Add a new scraping session button.

When scraping session appears rename it to Hello World.

Now we return to our Hello World proxy session and click on the Progress tab to view our HTTP
transactions.

Any of the transactions in the table can be made into scrapeable files in our scrape. We choose one
to load its information in the Request tab.

To create a scrapeable file from this transaction we just select the scraping session that we want the
file to be created in. In the Generate scrapeable file in drop-down, we select Hello World then we
click the Go button. Now we will see a scrapeable file in the objects tree.

Just to make sure things are correctly setup let's run a quick test. For this test we are going to run
the scraping session.

To start the scrape, we click on the Hello World scraping session in the objects tree, then click the
Run Scraping Session button. This will start the scraping session and transition you to the Log tab.
It should just take a moment to run.

We can view the text of the file that was scraped by clicking on the Form submission scrapeable file
in the objects tree, then on the Last Response tab. This will show the whole of the HTTP response
that the server sent back to screen-scraper.
We can view what the page looks like when it is rendered by clicking the Display Response in
Browser button. It's often helpful to view the last response for a scrapeable file after running a
scraping session so that we can ensure that screen-scraper requested the right page.

What is an Extractor Pattern?
An extractor pattern is a block of text (usually HTML) that contains special tokens that will match
the pieces of data we 're interested in gathering. These tokens are text labels surrounded by the
delimiters ~@ and @~.

We can think of an extractor pattern like a stencil. A stencil is an image in cut-out form, often made
of thin cardboard. To use a stencil we place it over a piece of paper, apply paint, then remove the
stencil. The effect is the paint only remains where there were holes in the stencil. Analogously, we
can think of placing an extractor pattern over the HTML of a web page. The tokens correspond to
the holes where the paint would pass through. After an extractor pattern is applied it reveals only the
portions of the web page where tokens were added.

Creating and Extractor Pattern (conceptually)
Let's consider this snippet of HTML that was taken from the page:

You typed: Hello world!

As we're interested in extracting the string "Hello world!" our extractor pattern would look like this:

You typed: ~@FORM_SUBMITTED_TEXT@~

We have added an extractor token with the name FORM_SUBMITTED_TEXT. In this form the
pattern is very exact and so prone to breaking if the page were to experience a minor change like
adding another attribute to the span tag, changing the style attribute to a class assignment, or
changing the tag that is used. To avoid these simple problems we will simplify our pattern.

>You typed: ~@FORM_SUBMITTED_TEXT@~<

As you can guess this does not make the pattern unbreakable, just more resilient. If the label before
the submitted text was changed it would no longer match and if the pattern added something after
the submitted text (but within the same tag) then the token would match too much. That said, we
have made it as stable as we can while making sure that it only matches what we want.

Creating an Extractor Pattern
We can have as many extractor patterns as you'd like in a given scrapeable file. screen-scraper will
invoke each of them in sequence after requesting the scrapeable file.

Using the Last Response Tab
The last response tab can be used to create extractor patterns using the HTML of the page. To view
the HTML of the page, we click on the Form submission scrapeable file, then on the Last Response
tab. Now we select the portion of the HTML that we want to use to create the extractor pattern:

With the text selected, right click and select Generate extractor pattern from selected text from the
menu that shows up. This will transition you to the Extractor Patterns tab of the scrapeable file and
place the selected text in the Pattern text field.

Now highlight the text that we want to be a token

With the text selected right click and select Generate extractor pattern token from selected text. In
the window that opens type FORM_SUBMITTED_TEXT in the Identifier textbox and close the
window by clicking on the X in the upper right-hand corner. Don't worry settings are saved when
the window closes.

We will notice that screen-scraper has automatically added the delimiters (~@ and @~) to the
extractor token.

We give our extractor pattern the identifier Form data.

Testing the Extractor Pattern
Go ahead and give the extractor pattern a try by clicking on the Test Pattern button. This will open a
window displaying the text that the extractor pattern extracted from the page.

Looks like our extractor pattern has matched the snippet of text we were after. The Test Pattern is
another invaluable tool we'll use often to make sure we're getting the right data. It simply uses the
HTML from the Last Response tab, and applies the extractor pattern to it.

Adding Properties to Extractor Token
To modify the properties for our FORM_SUBMITTED_TEXT extractor token, we double-click on
the text FORM_SUBMITTED_TEXT found between the ~@ @~ tokens in the Pattern text field.

In the window that opens, you can specify settings to the extracted data. . We are only worried about
Save in session variable property.

screen-scraper uses session variables as a means to allow us to save and persist objects throughout
the life of a scraping session. This means that screen-scraper will save the extracted data in memory
so that it can be used later in scripts and such. In this case we'd like to save the text that our
FORM_SUBMITTED_TEXT extractor pattern token retrieves. To indicate this, we click the Save
in session variable checkbox, then we close the Edit Token window.

Now when screen-scraper runs this scraping session and extracts the text for this extractor pattern it
will save the text in a session variable so that we can do something with it later.

How Scripts Work in screen-scraper
A screen-scraper script is a block of code that will get executed when a certain event occurs. For
example, we might have a script that gets invoked at the beginning of a scraping session that
initializes variables. Another script might get invoked each time a row in a list of search results is
extracted from a site so that the information in that search result can be inserted into a database.

Creating a Script
To create a new script, we click on the (Add a new script) button. Give it the identifier Write
extracted data to a file.

screen-scraper supports scripting in Interpreted Java, JavaScript, and Python when running on any
operating system, and JScript, Perl, and VBScript when running on Windows. We will be using Java
in this tutorial. Let's write our script.

// Output a message to the log so we know that we'll be writing the text out to a file.
session.log("Writing data to a file.");

// Create a FileWriter object that we'll use to write out the text.
out = new FileWriter("form_submitted_text.txt");

// Write out the text.
out.write(session.getVariable("FORM_SUBMITTED_TEXT"));

// Close the file.
out.close();

The session.getVariable("FORM_SUBMITTED_TEXT") method call retrieves the
value of the FORM_SUBMITTED_TEXT session variable. This method call is able to get the value
because we indicated earlier that the value for the FORM_SUBMITTED_TEXT extractor token
was to be saved in a session variable (i.e., when we checked the Save in session variable checkbox).

Adding Script Association/Trigger
A script is executed in screen-scraper by associating it with some event, such as before or after an
extractor pattern is applied to the text of a web page. The script we've just written needs to be
executed after screen-scraper has requested the web page and extracted the data we need from it.

We return to the extractor pattern we just created by clicking on the scrapeable file, then we click on
the Extractor Patterns tab. In the lower section of our extractor pattern, we click on the Add Script
button.

By default it adds an association to the first, alphabetically, script in our instance of screen scraper.
If this is not Write extracted data to a file then click on the script name and select it.

The trigger (when it will run) is defined in the When to Run column. For our script select After
pattern is applied.

Our Write extracted data to a file script will be invoked after screen-scraper has applied the Form
data extractor pattern to the web page. That is, once the extractor pattern has applied as many times
as it needs to (which, in this case, is only once), it will invoke the script.

Final Run
Now we have everything in place for our scrape. It knows what files to scrape, what data to extract,
and what to do with the extracted data. Now it is time to make sure that it is working.

Just like with the test run, we click on the Hello World scraping session in the objects tree. First, we
click on the Log tab. If there is existing text we get rid of it by clicking the Clear Log button. Now
we click on the Run Scraping Session button.

After it finishes running, we can take a look at the contents of the form_submitted_text.txt file,
which will be located in the screen-scraper installation directory (e.g., C:\Program Files\screen-
scraper professional edition\).

	What is an Extractor Pattern?
	Creating and Extractor Pattern (conceptually)
	Creating an Extractor Pattern
	Using the Last Response Tab

	Testing the Extractor Pattern
	Adding Properties to Extractor Token
	How Scripts Work in screen-scraper
	Creating a Script
	Adding Script Association/Trigger
	Final Run

